

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-contact-form 1.1 documentation

django-contact-form 1.1

Providing some sort of contact or feedback form for soliciting
information from site visitors is a common need in web development,
and writing a contact form and associated handler view, while
relatively straightforward to do with Django [https://www.djangoproject.com/], can be a tedious and repetitive
task.

This application aims to remove or reduce that tedium and repetition
by providing simple, extensible contact-form functionality for
Django-powered sites.

In the simplest case, all that’s required is a bit of configuration
and a few templates, and one pattern in your URLConf:

url(r'^contact/', include('contact_form.urls')),

Contents:

	Installation guide

	The ContactForm class

	Built-in views

	Frequently asked questions

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-contact-form 1.1 documentation

Installation guide

Before installing django-contact-form, you’ll need to have a copy
of Django [https://www.djangoproject.com] already installed. For
information on obtaining and installing Django, consult the Django
download page [https://www.djangoproject.com/download/], which
offers convenient packaged downloads and installation instructions.

The 1.1 release of django-contact-form supports Django 1.7
and 1.8, on any of Python 2.7, 3.3 or 3.4. Older versions of Django
and/or Python may work, but are not tested or officially supported. It
is expected that django-contact-form 1.1 will be compatible
with Python 3.5 once released (as of the release of
django-contact-form 1.1, Python 3.5 was in beta testing).

Normal installation

The preferred method of installing django-contact-form is via
pip, the standard Python package-installation tool. If you don’t
have pip, instructions are available for how to obtain and
install it [https://pip.pypa.io/en/latest/installing.html].

Once you have pip, simply type:

pip install django-contact-form

Manual installation

It’s also possible to install django-contact-form manually. To do
so, obtain the latest packaged version from the listing on the Python
Package Index [https://pypi.python.org/pypi/django-contact-form/]. Unpack the
.tar.gz file, and run:

python setup.py install

Once you’ve installed django-contact-form, you can verify
successful installation by opening a Python interpreter and typing
import contact_form.

If the installation was successful, you’ll simply get a fresh Python
prompt. If you instead see an ImportError, check the configuration
of your install tools and your Python import path to ensure
django-contact-form installed into a location Python can import
from.

Installing from a source checkout

The development repository for django-contact-form is at
<https://github.com/ubernostrum/django-contact-form>. Presuming you
have git [http://git-scm.com/] installed, you can obtain a copy of
the repository by typing:

git clone https://github.com/ubernostrum/django-contact-form.git

From there, you can use normal git commands to check out the specific
revision you want, and install it using python setup.py install.

Basic configuration and use

Once installed, only a small amount of setup is required to use
django-contact-form. First, you’ll need to make sure you’ve
specified the appropriate settings for Django to send email [https://docs.djangoproject.com/en/dev/topics/email/]. Most
commonly, this will be EMAIL_HOST, EMAIL_PORT,
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD.

You’ll also want to make sure django-contact-form sends mail from
the correct address, and sends to the correct address(es). Two
standard Django settings control this:

	By default, the From: header of all emails sent by
django-contact-form will be whatever email address is specified
in DEFAULT_FROM_EMAIL.

	By default, the recipient list for emails sent by
django-contact-form will be the email addresses specified in
MANAGERS.

If you’d prefer something else, this behavior is configurable; see
the form documentation for details on how to customize
the email addresses used.

Templates

The following templates are required by the default setup of
django-contact-form, so you’ll need to create them:

	contact_form/contact_form.html is the template which actually
renders the contact form. Important context variables are:

	form

	The contact form instance.

	contact_form/contact_form_sent.html is the template rendered
after a message is successfully sent through the contact form. It
has no specific context variables, beyond whatever’s supplied by the
context processors in use on your site.

Additionally, the generated email makes use of two templates:
contact_form/contact_form_subject.txt will be rendered to obtain
the subject line, and contact_form/contact_form.txt will be
rendered to obtain the body of the email. These templates use
RequestContext, so any context processors will be applied, and
have the following additional context:

	site

	The current site. Either a Site instance if
django.contrib.sites is installed, or a RequestSite
instance if not.

	body

	The body of the message the user entered into the contact form.

	email

	The email address the user supplied to the contact form.

	name

	The name the user supplied to the contact form.

URL configuration

Once you’ve got settings and templates set up, all that’s left is to
configure your URLs to point to the django-contact-form views. A
URLconf – contact_form.urls – is provided with
django-contact-form, which will wire up these views with default
behavior; to make use of it, simply include it at whatever point in
your URL hierarchy you’d like your contact form to live. For example,
to place it at /contact/:

url(r'^contact/', include('contact_form.urls')),

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-contact-form 1.1 documentation

The ContactForm class

	
class contact_form.forms.ContactForm

	The base contact form class from which all contact form classes
should inherit.

If you don’t need any custom functionality, you can simply use
this form to provide basic contact functionality; it will collect
name, email address and message.

The ContactFormView included in this
application knows how to work with this form and can handle many
types of subclasses as well (see below for a discussion of the
important points), so in many cases it will be all that you
need. If you’d like to use this form or a subclass of it from one
of your own views, just do the following:

	When you instantiate the form, pass the current HttpRequest
object to the constructor as the keyword argument request;
this is used internally by the base implementation, and also
made available so that subclasses can add functionality which
relies on inspecting the request (such as spam filtering).

	To send the message, call the form’s save method, which
accepts the keyword argument fail_silently and defaults it
to False. This argument is passed directly to
send_mail, and allows you to suppress or raise exceptions
as needed for debugging. The save method has no return
value.

Other than that, treat it like any other form; validity checks and
validated data are handled normally, through the is_valid
method and the cleaned_data dictionary.

Under the hood, this form uses a somewhat abstracted interface in
order to make it easier to subclass and add functionality.

These attributes play a role in determining behavior:

	
from_email

	The email address to use in the From: header of the
message. This can also be implemented as a method named
from_email(), in which case it will be called when
constructing the message. By default, this is the value of the
setting DEFAULT_FROM_EMAIL.

	
recipient_list

	The list of recipients for the message. This can also be
implemented as a method named recipient_list(), in which
case it will be called when constructing the message. By
default, this is the email addresses specified in the setting
MANAGERS.

	
subject_template_name

	The name of the template to use when rendering the subject line
of the message. By default, this is
contact_form/contact_form_subject.txt.

	
template_name

	The name of the template to use when rendering the body of the
message. By default, this is contact_form/contact_form.txt.

And two methods are involved in actually producing the contents of
the message to send:

	
message()

	Returns the body of the message to send. By default, this is
accomplished by rendering the template name specified in
template_name.

	
subject()

	Returns the subject line of the message to send. By default,
this is accomplished by rendering the template name specified
in subject_template_name.

Finally, the message itself is generated by the following two
methods:

	
get_message_dict()

	This method loops through from_email,
recipient_list, message() and subject(),
collecting those parts into a dictionary with keys
corresponding to the arguments to Django’s send_mail
function, then returns the dictionary. Overriding this allows
essentially unlimited customization of how the message is
generated.

	
get_context()

	For methods which render portions of the message using
templates (by default, message() and subject()),
generates the context used by those templates. The default
context will be a RequestContext (using the current HTTP
request, so user information is available), plus the contents
of the form’s cleaned_data dictionary, and one additional
variable:

	site

	If django.contrib.sites is installed, the
currently-active Site object. Otherwise, a
RequestSite object generated from the request.

Meanwhile, the following attributes/methods generally should not
be overridden; doing so may interfere with functionality, may not
accomplish what you want, and generally any desired customization
can be accomplished in a more straightforward way through
overriding one of the attributes/methods listed above.

	
request

	The HttpRequest object representing the current
request. This is set automatically in __init__(), and is
used both to generate a RequestContext for the templates
and to allow subclasses to engage in request-specific behavior.

	
save()

	If the form has data and is valid, will actually send the
email, by calling get_message_dict() and passing the
result to Django’s send_mail function.

Note that subclasses which override __init__ or save()
need to accept *args and **kwargs, and pass them via
super, in order to preserve behavior (each of those methods
accepts at least one additional argument, and this application
expects and requires them to do so).

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-contact-form 1.1 documentation

Built-in views

	
class contact_form.views.ContactFormView

	The base view class from which most custom contact-form views
should inherit. If you don’t need any custom functionality, and
are content with the default
ContactForm class, you can also just
use it as-is (and the provided URLConf, contact_form.urls,
does exactly this).

This is a subclass of Django’s FormView [https://docs.djangoproject.com/en/dev/ref/class-based-views/flattened-index/#formview],
so refer to the Django documentation for a list of
attributes/methods which can be overridden to customize behavior.

One non-standard attribute is defined here:

	
recipient_list

	The list of email addresses to send mail to. If not specified,
defaults to the
recipient_list of the
form.

Additionally, the following standard (from FormView) methods
and attributes are commonly useful to override:

	
form_class

	The form class to use. By default, will be
ContactForm. This can also be
overridden as a method named form_class(); this permits,
for example, per-request customization (by inspecting
attributes of self.request).

	
template_name

	The template to use when rendering the form. By default, will
be contact_form/contact_form.html.

	
get_success_url()

	The URL to redirect to after successful form submission. By
default, this is the named URL contact_form.sent. In the
default URLconf provided with django-contact-form, that URL
is mapped to TemplateView rendering the template
contact_form/contact_form_sent.html.

	
get_form_kwargs()

	Returns additional keyword arguments (as a dictionary) to pass
to the form class on initialization.

By default, this will return a dictionary containing the
current HttpRequest (as the key request) and, if
recipient_list was defined, its value
(as the key recipient_list).

Warning

If you override get_form_kwargs(), you
must ensure that, at the very least, the keyword
argument request is still provided, or ContactForm
initialization will raise TypeError. The simplest
approach is to use super() to call the base
implementation in ContactFormView, and modify the
dictionary it returns.

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-contact-form 1.1 documentation

Frequently asked questions

The following notes answer some common questions, and may be useful to
you when installing, configuring or using django-contact-form.

What versions of Django are supported?

As of django-contact-form 1.1, Django 1.7 and 1.8 are
supported.

What versions of Python are supported?

As of 1.1, django-contact-form supports Python 2.7, 3.3, and
3.4. It is anticipated that when Python 3.5 is released,
django-contact-form 1.1 will be compatible with it.

Why aren’t there any default templates I can use?

Usable default templates, for an application designed to be widely
reused, are essentially impossible to produce; variations in site
design, block structure, etc. cannot be reliably accounted for. As
such, django-contact-form provides bare-bones (i.e., containing no
HTML structure whatsoever) templates in its source distribution to
enable running tests, and otherwise simply provides good documentation
of all required templates and the context made available to them.

What happened to the spam-filtering form in previous versions?

Older versions of django-contact-form shipped a subclass of
ContactForm which used the Akismet web
service [http://akismet.com/] to identify and reject spam
submissions.

Unfortunately, the Akismet Python library – required in order to use
such a class – does not currently support all versions of Python on
which django-contact-form is supported, meaning it cannot be
included in django-contact-form by default. The author of
django-contact-form is working on producing a version of the
Akismet library compatible with Python 3, but it was not yet ready as
of the release of django-contact-form 1.1.

Why am I getting a bunch of BadHeaderError exceptions?

Most likely, you have an error in your
ContactForm subclass. Specifically, one
or more of from_email,
recipient_list or
subject() are returning values
which contain newlines.

As a security precaution against email header injection attacks (which
allow spammers and other malicious users to manipulate email and
potentially cause automated systems to send mail to unintended
recipients), Django’s email-sending framework does not permit
newlines in message headers [https://docs.djangoproject.com/en/dev/topics/email/#preventing-header-injection]. BadHeaderError
is the exception Django raises when a newline is detected in a header.

Note that this only applies to the headers of an email message; the
message body can (and usually does) contain newlines.

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-contact-form 1.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 contact_form	

 	
 	
 contact_form.forms	

 	
 	
 contact_form.views	

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-contact-form 1.1 documentation

Index

 C
 | F
 | G
 | M
 | R
 | S
 | T

C

 	

 	contact_form.forms (module)

 	contact_form.views (module)

 	

 	ContactForm (class in contact_form.forms)

 	ContactFormView (class in contact_form.views)

F

 	

 	form_class (contact_form.views.ContactFormView attribute)

 	

 	from_email (contact_form.forms.ContactForm attribute)

G

 	

 	get_context() (contact_form.forms.ContactForm method)

 	get_form_kwargs() (contact_form.views.ContactFormView method)

 	

 	get_message_dict() (contact_form.forms.ContactForm method)

 	get_success_url() (contact_form.views.ContactFormView method)

M

 	

 	message() (contact_form.forms.ContactForm method)

R

 	

 	recipient_list (contact_form.forms.ContactForm attribute)

 	

 	(contact_form.views.ContactFormView attribute)

 	

 	request (contact_form.forms.ContactForm attribute)

S

 	

 	save() (contact_form.forms.ContactForm method)

 	subject() (contact_form.forms.ContactForm method)

 	

 	subject_template_name (contact_form.forms.ContactForm attribute)

T

 	

 	template_name (contact_form.forms.ContactForm attribute)

 	

 	(contact_form.views.ContactFormView attribute)

 Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/minus.png

_static/up.png

_static/down-pressed.png

_static/file.png

_static/down.png

_static/comment-close.png

_static/comment-bright.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		django-contact-form 1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2007-2015, James Bennett.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment.png

