
django-contact-form Documentation
Release 1.1

James Bennett

January 17, 2016

Contents

1 Installation guide 3
1.1 Normal installation . 3
1.2 Manual installation . 3
1.3 Installing from a source checkout . 3
1.4 Basic configuration and use . 4

2 The ContactForm class 7

3 Built-in views 9

4 Frequently asked questions 11
4.1 What versions of Django are supported? . 11
4.2 What versions of Python are supported? . 11
4.3 Why aren’t there any default templates I can use? . 11
4.4 What happened to the spam-filtering form in previous versions? . 11
4.5 Why am I getting a bunch of BadHeaderError exceptions? . 12

Python Module Index 13

i

ii

django-contact-form Documentation, Release 1.1

Providing some sort of contact or feedback form for soliciting information from site visitors is a common need in
web development, and writing a contact form and associated handler view, while relatively straightforward to do with
Django, can be a tedious and repetitive task.

This application aims to remove or reduce that tedium and repetition by providing simple, extensible contact-form
functionality for Django-powered sites.

In the simplest case, all that’s required is a bit of configuration and a few templates, and one pattern in your URLConf:

url(r'^contact/', include('contact_form.urls')),

Contents:

Contents 1

https://www.djangoproject.com/

django-contact-form Documentation, Release 1.1

2 Contents

CHAPTER 1

Installation guide

Before installing django-contact-form, you’ll need to have a copy of Django already installed. For information
on obtaining and installing Django, consult the Django download page, which offers convenient packaged downloads
and installation instructions.

The 1.1 release of django-contact-form supports Django 1.7 and 1.8, on any of Python 2.7, 3.3 or 3.4.
Older versions of Django and/or Python may work, but are not tested or officially supported. It is expected
that django-contact-form 1.1 will be compatible with Python 3.5 once released (as of the release of
django-contact-form 1.1, Python 3.5 was in beta testing).

1.1 Normal installation

The preferred method of installing django-contact-form is via pip, the standard Python package-installation
tool. If you don’t have pip, instructions are available for how to obtain and install it.

Once you have pip, simply type:

pip install django-contact-form

1.2 Manual installation

It’s also possible to install django-contact-form manually. To do so, obtain the latest packaged version from
the listing on the Python Package Index. Unpack the .tar.gz file, and run:

python setup.py install

Once you’ve installed django-contact-form, you can verify successful installation by opening a Python inter-
preter and typing import contact_form.

If the installation was successful, you’ll simply get a fresh Python prompt. If you instead see an ImportError, check
the configuration of your install tools and your Python import path to ensure django-contact-form installed into
a location Python can import from.

1.3 Installing from a source checkout

The development repository for django-contact-form is at <https://github.com/ubernostrum/django-contact-
form>. Presuming you have git installed, you can obtain a copy of the repository by typing:

3

https://www.djangoproject.com
https://www.djangoproject.com/download/
https://pip.pypa.io/en/latest/installing.html
https://pypi.python.org/pypi/django-contact-form/
https://github.com/ubernostrum/django-contact-form
https://github.com/ubernostrum/django-contact-form
http://git-scm.com/

django-contact-form Documentation, Release 1.1

git clone https://github.com/ubernostrum/django-contact-form.git

From there, you can use normal git commands to check out the specific revision you want, and install it using python
setup.py install.

1.4 Basic configuration and use

Once installed, only a small amount of setup is required to use django-contact-form. First, you’ll need to make
sure you’ve specified the appropriate settings for Django to send email. Most commonly, this will be EMAIL_HOST,
EMAIL_PORT, EMAIL_HOST_USER and EMAIL_HOST_PASSWORD.

You’ll also want to make sure django-contact-form sends mail from the correct address, and sends to the
correct address(es). Two standard Django settings control this:

• By default, the From: header of all emails sent by django-contact-form will be whatever email address
is specified in DEFAULT_FROM_EMAIL.

• By default, the recipient list for emails sent by django-contact-form will be the email addresses specified
in MANAGERS.

If you’d prefer something else, this behavior is configurable; see the form documentation for details on how to cus-
tomize the email addresses used.

1.4.1 Templates

The following templates are required by the default setup of django-contact-form, so you’ll need to create
them:

• contact_form/contact_form.html is the template which actually renders the contact form. Important
context variables are:

form The contact form instance.

• contact_form/contact_form_sent.html is the template rendered after a message is successfully
sent through the contact form. It has no specific context variables, beyond whatever’s supplied by the context
processors in use on your site.

Additionally, the generated email makes use of two templates: contact_form/contact_form_subject.txt
will be rendered to obtain the subject line, and contact_form/contact_form.txt will be rendered to obtain
the body of the email. These templates use RequestContext, so any context processors will be applied, and have
the following additional context:

site The current site. Either a Site instance if django.contrib.sites is installed, or a RequestSite
instance if not.

body The body of the message the user entered into the contact form.

email The email address the user supplied to the contact form.

name The name the user supplied to the contact form.

1.4.2 URL configuration

Once you’ve got settings and templates set up, all that’s left is to configure your URLs to point
to the django-contact-form views. A URLconf – contact_form.urls – is provided with

4 Chapter 1. Installation guide

https://docs.djangoproject.com/en/dev/topics/email/

django-contact-form Documentation, Release 1.1

django-contact-form, which will wire up these views with default behavior; to make use of it, simply in-
clude it at whatever point in your URL hierarchy you’d like your contact form to live. For example, to place it at
/contact/:

url(r'^contact/', include('contact_form.urls')),

1.4. Basic configuration and use 5

django-contact-form Documentation, Release 1.1

6 Chapter 1. Installation guide

CHAPTER 2

The ContactForm class

class contact_form.forms.ContactForm
The base contact form class from which all contact form classes should inherit.

If you don’t need any custom functionality, you can simply use this form to provide basic contact functionality;
it will collect name, email address and message.

The ContactFormView included in this application knows how to work with this form and can handle many
types of subclasses as well (see below for a discussion of the important points), so in many cases it will be all
that you need. If you’d like to use this form or a subclass of it from one of your own views, just do the following:

1.When you instantiate the form, pass the current HttpRequest object to the constructor as the keyword
argument request; this is used internally by the base implementation, and also made available so that
subclasses can add functionality which relies on inspecting the request (such as spam filtering).

2.To send the message, call the form’s save method, which accepts the keyword argument
fail_silently and defaults it to False. This argument is passed directly to send_mail, and
allows you to suppress or raise exceptions as needed for debugging. The save method has no return
value.

Other than that, treat it like any other form; validity checks and validated data are handled normally, through the
is_valid method and the cleaned_data dictionary.

Under the hood, this form uses a somewhat abstracted interface in order to make it easier to subclass and add
functionality.

These attributes play a role in determining behavior:

from_email
The email address to use in the From: header of the message. This can also be implemented as a method
named from_email(), in which case it will be called when constructing the message. By default, this
is the value of the setting DEFAULT_FROM_EMAIL.

recipient_list
The list of recipients for the message. This can also be implemented as a method named
recipient_list(), in which case it will be called when constructing the message. By default, this is
the email addresses specified in the setting MANAGERS.

subject_template_name
The name of the template to use when rendering the subject line of the message. By default, this is
contact_form/contact_form_subject.txt.

template_name
The name of the template to use when rendering the body of the message. By default, this is
contact_form/contact_form.txt.

7

django-contact-form Documentation, Release 1.1

And two methods are involved in actually producing the contents of the message to send:

message()
Returns the body of the message to send. By default, this is accomplished by rendering the template name
specified in template_name.

subject()
Returns the subject line of the message to send. By default, this is accomplished by rendering the template
name specified in subject_template_name.

Finally, the message itself is generated by the following two methods:

get_message_dict()
This method loops through from_email, recipient_list, message() and subject(), col-
lecting those parts into a dictionary with keys corresponding to the arguments to Django’s send_mail
function, then returns the dictionary. Overriding this allows essentially unlimited customization of how
the message is generated.

get_context()
For methods which render portions of the message using templates (by default, message() and
subject()), generates the context used by those templates. The default context will be a
RequestContext (using the current HTTP request, so user information is available), plus the contents
of the form’s cleaned_data dictionary, and one additional variable:

site If django.contrib.sites is installed, the currently-active Site object. Otherwise, a
RequestSite object generated from the request.

Meanwhile, the following attributes/methods generally should not be overridden; doing so may interfere with
functionality, may not accomplish what you want, and generally any desired customization can be accomplished
in a more straightforward way through overriding one of the attributes/methods listed above.

request
The HttpRequest object representing the current request. This is set automatically in __init__(),
and is used both to generate a RequestContext for the templates and to allow subclasses to engage in
request-specific behavior.

save()
If the form has data and is valid, will actually send the email, by calling get_message_dict() and
passing the result to Django’s send_mail function.

Note that subclasses which override __init__ or save() need to accept *args and **kwargs, and pass
them via super, in order to preserve behavior (each of those methods accepts at least one additional argument,
and this application expects and requires them to do so).

8 Chapter 2. The ContactForm class

CHAPTER 3

Built-in views

class contact_form.views.ContactFormView
The base view class from which most custom contact-form views should inherit. If you don’t need any custom
functionality, and are content with the default ContactForm class, you can also just use it as-is (and the
provided URLConf, contact_form.urls, does exactly this).

This is a subclass of Django’s FormView, so refer to the Django documentation for a list of attributes/methods
which can be overridden to customize behavior.

One non-standard attribute is defined here:

recipient_list
The list of email addresses to send mail to. If not specified, defaults to the recipient_list of the
form.

Additionally, the following standard (from FormView) methods and attributes are commonly useful to override:

form_class
The form class to use. By default, will be ContactForm. This can also be overridden as a method
named form_class(); this permits, for example, per-request customization (by inspecting attributes of
self.request).

template_name
The template to use when rendering the form. By default, will be
contact_form/contact_form.html.

get_success_url()
The URL to redirect to after successful form submission. By default, this is the named URL
contact_form.sent. In the default URLconf provided with django-contact-form, that URL is
mapped to TemplateView rendering the template contact_form/contact_form_sent.html.

get_form_kwargs()
Returns additional keyword arguments (as a dictionary) to pass to the form class on initialization.

By default, this will return a dictionary containing the current HttpRequest (as the key request) and,
if recipient_list was defined, its value (as the key recipient_list).

Warning: If you override get_form_kwargs(), you must ensure that, at the very least, the key-
word argument request is still provided, or ContactForm initialization will raise TypeError.
The simplest approach is to use super() to call the base implementation in ContactFormView,
and modify the dictionary it returns.

9

https://docs.djangoproject.com/en/dev/ref/class-based-views/flattened-index/#formview

django-contact-form Documentation, Release 1.1

10 Chapter 3. Built-in views

CHAPTER 4

Frequently asked questions

The following notes answer some common questions, and may be useful to you when installing, configuring or using
django-contact-form.

4.1 What versions of Django are supported?

As of django-contact-form 1.1, Django 1.7 and 1.8 are supported.

4.2 What versions of Python are supported?

As of 1.1, django-contact-form supports Python 2.7, 3.3, and 3.4. It is anticipated that when Python 3.5 is
released, django-contact-form 1.1 will be compatible with it.

4.3 Why aren’t there any default templates I can use?

Usable default templates, for an application designed to be widely reused, are essentially impossible to produce;
variations in site design, block structure, etc. cannot be reliably accounted for. As such, django-contact-form
provides bare-bones (i.e., containing no HTML structure whatsoever) templates in its source distribution to enable
running tests, and otherwise simply provides good documentation of all required templates and the context made
available to them.

4.4 What happened to the spam-filtering form in previous versions?

Older versions of django-contact-form shipped a subclass of ContactForm which used the Akismet web
service to identify and reject spam submissions.

Unfortunately, the Akismet Python library – required in order to use such a class – does not currently sup-
port all versions of Python on which django-contact-form is supported, meaning it cannot be included
in django-contact-form by default. The author of django-contact-form is working on produc-
ing a version of the Akismet library compatible with Python 3, but it was not yet ready as of the release of
django-contact-form 1.1.

11

http://akismet.com/
http://akismet.com/

django-contact-form Documentation, Release 1.1

4.5 Why am I getting a bunch of BadHeaderError exceptions?

Most likely, you have an error in your ContactForm subclass. Specifically, one or more of from_email,
recipient_list or subject() are returning values which contain newlines.

As a security precaution against email header injection attacks (which allow spammers and other malicious users to
manipulate email and potentially cause automated systems to send mail to unintended recipients), Django’s email-
sending framework does not permit newlines in message headers. BadHeaderError is the exception Django raises
when a newline is detected in a header.

Note that this only applies to the headers of an email message; the message body can (and usually does) contain
newlines.

12 Chapter 4. Frequently asked questions

https://docs.djangoproject.com/en/dev/topics/email/#preventing-header-injection
https://docs.djangoproject.com/en/dev/topics/email/#preventing-header-injection

Python Module Index

c
contact_form.forms, 5
contact_form.views, 8

13

django-contact-form Documentation, Release 1.1

14 Python Module Index

Index

C
contact_form.forms (module), 5
contact_form.views (module), 8
ContactForm (class in contact_form.forms), 7
ContactFormView (class in contact_form.views), 9

F
form_class (contact_form.views.ContactFormView at-

tribute), 9
from_email (contact_form.forms.ContactForm attribute),

7

G
get_context() (contact_form.forms.ContactForm

method), 8
get_form_kwargs() (con-

tact_form.views.ContactFormView method),
9

get_message_dict() (contact_form.forms.ContactForm
method), 8

get_success_url() (con-
tact_form.views.ContactFormView method),
9

M
message() (contact_form.forms.ContactForm method), 8

R
recipient_list (contact_form.forms.ContactForm at-

tribute), 7
recipient_list (contact_form.views.ContactFormView at-

tribute), 9
request (contact_form.forms.ContactForm attribute), 8

S
save() (contact_form.forms.ContactForm method), 8
subject() (contact_form.forms.ContactForm method), 8
subject_template_name (con-

tact_form.forms.ContactForm attribute),
7

T
template_name (contact_form.forms.ContactForm

attribute), 7
template_name (contact_form.views.ContactFormView

attribute), 9

15

	Installation guide
	Normal installation
	Manual installation
	Installing from a source checkout
	Basic configuration and use

	The ContactForm class
	Built-in views
	Frequently asked questions
	What versions of Django are supported?
	What versions of Python are supported?
	Why aren't there any default templates I can use?
	What happened to the spam-filtering form in previous versions?
	Why am I getting a bunch of BadHeaderError exceptions?

	Python Module Index

