
django-contact-form Documentation
Release 1.3

James Bennett

November 13, 2016

Installation and configuration

1 Installation guide 3

2 Quick start guide 5

3 URL configuration 7

4 Required templates 9

5 The ContactForm class 11

6 Built-in views 13

7 Frequently asked questions 15

Python Module Index 17

i

ii

django-contact-form Documentation, Release 1.3

django-contact-form provides simple, customizable contact-form functionality for Django-powered Web sites.

Basic functionality (collecting a name, email address and message) can be achieved out of the box by setting up a few
templates and adding one line to your site’s root URLconf:

url(r'^contact/', include('contact_form.urls')),

For notes on getting started quickly, and on how to customize django-contact-form‘s behavior, read through
the full documentation below.

Contents:

Installation and configuration 1

https://www.djangoproject.com/

django-contact-form Documentation, Release 1.3

2 Installation and configuration

CHAPTER 1

Installation guide

Before installing django-contact-form, you’ll need to have a copy of Django already installed. For information on
obtaining and installing Django, consult the Django download page, which offers convenient packaged downloads and
installation instructions.

The release of django-contact-form supports Django 1.8, 1.9, and 1.10, on the following Python versions:

• Django 1.8 suports Python 2.7, 3.3, 3.4 and 3.5.

• Django 1.9 supports Python 2.7, 3.4 and 3.5.

• Django 1.10 supports Python 2.7, 3.4 and 3.5.

It is expected that django-contact-form will work without modification on Python 3.6 once it is released.

Important: Python 3.2

Although Django 1.8 supported Python 3.2 at the time of its release, the Python 3.2 series has reached end-of-life, and
as a result support for Python 3.2 has been dropped from django-contact-form.

1.1 Normal installation

The preferred method of installing django-contact-form is via pip, the standard Python package-installation tool. If
you don’t have pip, instructions are available for how to obtain and install it. If you’re using Python 2.7.9 or later (for
Python 2) or Python 3.4 or later (for Python 3), pip came bundled with your installation of Python.

Once you have pip, simply type:

pip install django-contact-form

1.2 Manual installation

It’s also possible to install django-contact-form manually. To do so, obtain the latest packaged version from the listing
on the Python Package Index. Unpack the .tar.gz file, and run:

python setup.py install

Once you’ve installed django-contact-form, you can verify successful installation by opening a Python interpreter and
typing import contact_form.

3

https://www.djangoproject.com
https://www.djangoproject.com/download/
https://pip.pypa.io/en/latest/installing.html
https://pypi.python.org/pypi/django-contact-form/
https://pypi.python.org/pypi/django-contact-form/

django-contact-form Documentation, Release 1.3

If the installation was successful, you’ll simply get a fresh Python prompt. If you instead see an ImportError,
check the configuration of your install tools and your Python import path to ensure django-contact-form installed into
a location Python can import from.

1.3 Installing from a source checkout

The development repository for django-contact-form is at <https://github.com/ubernostrum/django-contact-form>.
Presuming you have git installed, you can obtain a copy of the repository by typing:

git clone https://github.com/ubernostrum/django-contact-form.git

From there, you can use normal git commands to check out the specific revision you want, and install it using python
setup.py install.

1.4 Basic configuration and use

Once you have Django and django-contact-form installed, check out the quick start guide to see how to get your
contact form up and running.

4 Chapter 1. Installation guide

https://github.com/ubernostrum/django-contact-form
http://git-scm.com/

CHAPTER 2

Quick start guide

First you’ll need to have Django and django-contact-form installed; for details on that, see the installation guide.

Once that’s done, you can start setting up django-contact-form. Since it doesn’t provide any database models or use
any other application-config mechanisms, you do not need to add django-contact-form to your INSTALLED_APPS
setting; you can simply begin using it right away.

5

django-contact-form Documentation, Release 1.3

6 Chapter 2. Quick start guide

CHAPTER 3

URL configuration

The easiest way to set up the views in django-contact-form is to just use the provided URLconf, found at
contact_form.urls. You can include it wherever you like in your site’s URL configuration; for example, to
have it live at the URL /contact/:

from django.conf.urls import include, url

urlpatterns = [
... other URL patterns for your site ...
url(r'^contact/', include('contact_form.urls')),

]

If you’ll be using a custom form class, you’ll need to manually set up your URLs so you can tell django-contact-form
about your form class. For example:

from django.conf.urls import include, url
from django.views.generic import TemplateView

from contact_form.views import ContactFormView

from yourapp.forms import YourCustomFormClass

urlpatterns = [
... other URL patterns for your site ...
url(r'^contact/$',

ContactFormView.as_view(
form_class=YourCustomFormClass),

name='contact_form'),
url(r'^contact/sent/$',

TemplateView.as_view(
template_name='contact_form/contact_form_sent.html'),

name='contact_form_sent'),
]

Important: Where to put custom forms and views

When writing a custom form class (or custom ContactFormView subclass), don’t put your custom code inside
django-contact-form. Instead, put your custom code in the appropriate place (a forms.py or views.py file) in an
application you’ve written.

7

django-contact-form Documentation, Release 1.3

8 Chapter 3. URL configuration

CHAPTER 4

Required templates

The two views above will need two templates to be created:

contact_form/contact_form.html This is used to display the contact form. It has a RequestContext
(so any context processors will be applied), and also provides the form instance as the context variable form.

contact_form/contact_form_sent.html This is used after a successful form submission, to let the user
know their message has been sent. It has a RequestContext, but provides no additional context variables of
its own.

You’ll also need to create at least two more templates to handle the rendering of the message:
contact_form/contact_form_subject.txt for the subject line of the email to send, and
contact_form/contact_form.txt for the body (note that the file extension for these is .txt, not
.html!). Both of these will receive a RequestContext with a set of variables named for the fields of the form
(by default: name, email and body), as well as one more variable: site, representing the current site (either a
Site or RequestSite instance, depending on whether Django’s sites framework is installed).

Warning: Subject must be a single line
In order to prevent header injection attacks, the subject must be only a single line of text, and Django’s email
framework will reject any attempt to send an email with a multi-line subject. So it’s a good idea to ensure your
contact_form_subject.txt template only produces a single line of output when rendered; as a precaution,
however, django-contact-form will split the output of this template at line breaks, then forcibly re-join it into a
single line of text.

9

https://en.wikipedia.org/wiki/Email_injection

django-contact-form Documentation, Release 1.3

10 Chapter 4. Required templates

CHAPTER 5

The ContactForm class

class contact_form.forms.ContactForm
The base contact form class from which all contact form classes should inherit.

If you don’t need any customization, you can simply use this form to provide basic contact functionality; it will
collect name, email address and message.

The ContactFormView included in this application knows how to work with this form and can handle many
types of subclasses as well (see below for a discussion of the important points), so in many cases it will be all
that you need. If you’d like to use this form or a subclass of it from one of your own views, just do the following:

1.When you instantiate the form, pass the current HttpRequest object as the keyword argument
request; this is used internally by the base implementation, and also made available so that subclasses
can add functionality which relies on inspecting the request (such as spam filtering).

2.To send the message, call the form’s save method, which accepts the keyword argument
fail_silently and defaults it to False. This argument is passed directly to Django’s
send_mail() function, and allows you to suppress or raise exceptions as needed for debugging. The
save method has no return value.

Other than that, treat it like any other form; validity checks and validated data are handled normally, through the
is_valid() method and the cleaned_data dictionary.

Under the hood, this form uses a somewhat abstracted interface in order to make it easier to subclass and add
functionality.

The following attributes play a role in determining behavior, and any of them can be implemented as an attribute
or as a method:

from_email
The email address to use in the From: header of the message. By default, this is the value of the setting
DEFAULT_FROM_EMAIL.

recipient_list
The list of recipients for the message. By default, this is the email addresses specified in the setting
MANAGERS.

subject_template_name
The name of the template to use when rendering the subject line of the message. By default, this is
contact_form/contact_form_subject.txt.

template_name
The name of the template to use when rendering the body of the message. By default, this is
contact_form/contact_form.txt.

And two methods are involved in actually producing the contents of the message to send:

11

django-contact-form Documentation, Release 1.3

message()
Returns the body of the message to send. By default, this is accomplished by rendering the template name
specified in template_name.

subject()
Returns the subject line of the message to send. By default, this is accomplished by rendering the template
name specified in subject_template_name.

Finally, the message itself is generated by the following two methods:

get_message_dict()
This method loops through from_email, recipient_list, message() and subject(), col-
lecting those parts into a dictionary with keys corresponding to the arguments to Django’s send_mail
function, then returns the dictionary. Overriding this allows essentially unlimited customization of how
the message is generated. Note that for compatibility, implementations which override this should support
callables for the values of from_email and recipient_list.

get_context()
For methods which render portions of the message using templates (by default, message() and
subject()), generates the context used by those templates. The default context will be a
RequestContext (using the current HTTP request, so user information is available), plus the contents
of the form’s cleaned_data dictionary, and one additional variable:

site If django.contrib.sites is installed, the currently-active Site object. Otherwise, a
RequestSite object generated from the request.

Meanwhile, the following attributes/methods generally should not be overridden; doing so may interfere with
functionality, may not accomplish what you want, and generally any desired customization can be accomplished
in a more straightforward way through overriding one of the attributes/methods listed above.

request
The HttpRequest object representing the current request. This is set automatically in __init__(),
and is used both to generate a RequestContext for the templates and to allow subclasses to engage in
request-specific behavior.

save()
If the form has data and is valid, will actually send the email, by calling get_message_dict() and
passing the result to Django’s send_mail function.

Note that subclasses which override __init__ or save() need to accept *args and **kwargs, and pass
them via super, in order to preserve behavior (each of those methods accepts at least one additional argument,
and this application expects and requires them to do so).

12 Chapter 5. The ContactForm class

CHAPTER 6

Built-in views

class contact_form.views.ContactFormView
The base view class from which most custom contact-form views should inherit. If you don’t need any custom
functionality, and are content with the default ContactForm class, you can also just use it as-is (and the
provided URLConf, contact_form.urls, does exactly this).

This is a subclass of Django’s FormView, so refer to the Django documentation for a list of attributes/methods
which can be overridden to customize behavior.

One non-standard attribute is defined here:

recipient_list
The list of email addresses to send mail to. If not specified, defaults to the recipient_list of the
form.

Additionally, the following standard (from FormView) methods and attributes are commonly useful to override
(all attributes below can also be passed to as_view() in the URLconf, permitting customization without the
need to write a full custom subclass of ContactFormView):

form_class
The form class to use. By default, will be ContactForm. This can also be overridden as a method
named form_class(); this permits, for example, per-request customization (by inspecting attributes of
self.request).

template_name
The template to use when rendering the form. By default, will be
contact_form/contact_form.html.

get_success_url()
The URL to redirect to after successful form submission. By default, this is the named URL
contact_form.sent. In the default URLconf provided with django-contact-form, that URL is
mapped to TemplateView rendering the template contact_form/contact_form_sent.html.

get_form_kwargs()
Returns additional keyword arguments (as a dictionary) to pass to the form class on initialization.

By default, this will return a dictionary containing the current HttpRequest (as the key request) and,
if recipient_list was defined, its value (as the key recipient_list).

Warning: If you override get_form_kwargs(), you must ensure that, at the very least, the key-
word argument request is still provided, or ContactForm initialization will raise TypeError.
The simplest approach is to use super() to call the base implementation in ContactFormView,
and modify the dictionary it returns.

13

https://docs.djangoproject.com/en/dev/ref/class-based-views/flattened-index/#formview

django-contact-form Documentation, Release 1.3

Warning: Implementing form_invalid()
To work around a potential performance issue in Django 1.9, ContactFormView implements
the form_invalid() method. If you choose to override form_invalid() in a subclass of
ContactFormView, be sure to read the implementation and comments in the source code of django-
contact-form first. Note that Django 1.9.1, once released, will not be affected by this bug.

14 Chapter 6. Built-in views

https://code.djangoproject.com/ticket/25548

CHAPTER 7

Frequently asked questions

The following notes answer some common questions, and may be useful to you when installing, configuring or using
django-contact-form.

7.1 What versions of Django and Python are supported?

As of django-contact-form , Django 1.8, 1.9, and 1.10 are supported, on Python 2.7, 3.3, 3.4 or 3.5. Although Django
1.8 supported Python 3.2 at initial release, Python 3.2 is now at its end-of-life and django-contact-form no longer
supports it.

It is expected that django-contact-form will also work without modification on Python 3.6 once it is released.

7.2 What license is django-contact-form under?

django-contact-form is offered under a three-clause BSD-style license; this is an OSI-approved open-source license,
and allows you a large degree of freedom in modifiying and redistributing the code. For the full terms, see the file
LICENSE which came with your copy of django-contact-form; if you did not receive a copy of this file, you can view
it online at <https://github.com/ubernostrum/django-contact-form/blob/master/LICENSE>.

7.3 Why aren’t there any default templates I can use?

Usable default templates, for an application designed to be widely reused, are essentially impossible to produce;
variations in site design, block structure, etc. cannot be reliably accounted for. As such, django-contact-form provides
bare-bones (i.e., containing no HTML structure whatsoever) templates in its source distribution to enable running tests,
and otherwise simply provides good documentation of all required templates and the context made available to them.

7.4 What happened to the spam-filtering form in previous versions?

Older versions of django-contact-form shipped a subclass of ContactForm which used the Akismet web service to
identify and reject spam submissions.

Unfortunately, the Akismet Python library – required in order to use such a class – does not currently support all
versions of Python on which django-contact-form is supported, meaning it cannot be included in django-contact-form
by default. The author of django-contact-form is working on producing a version of the Akismet library compatible
with Python 3, but it was not yet ready as of the release of django-contact-form .

15

http://www.opensource.org/licenses/bsd-license.php
https://github.com/ubernostrum/django-contact-form/blob/master/LICENSE
http://akismet.com/

django-contact-form Documentation, Release 1.3

7.5 Why am I getting a bunch of BadHeaderError exceptions?

Most likely, you have an error in your ContactForm subclass. Specifically, one or more of from_email,
recipient_list or subject() are returning values which contain newlines.

As a security precaution against email header injection attacks (which allow spammers and other malicious users to
manipulate email and potentially cause automated systems to send mail to unintended recipients), Django’s email-
sending framework does not permit newlines in message headers. BadHeaderError is the exception Django raises
when a newline is detected in a header.

Note that this only applies to the headers of an email message; the message body can (and usually does) contain
newlines.

7.6 I found a bug or want to make an improvement!

The canonical development repository for django-contact-form is online at <https://github.com/ubernostrum/django-
contact-form>. Issues and pull requests can both be filed there.

If you’d like to contribute to django-contact-form, that’s great! Just please remember that pull requests should include
tests and documentation for any changes made, and that following PEP 8 is mandatory. Pull requests without docu-
mentation won’t be merged, and PEP 8 style violations or test coverage below 100% are both configured to break the
build.

16 Chapter 7. Frequently asked questions

https://docs.djangoproject.com/en/dev/topics/email/#preventing-header-injection
https://docs.djangoproject.com/en/dev/topics/email/#preventing-header-injection
https://github.com/ubernostrum/django-contact-form
https://github.com/ubernostrum/django-contact-form
https://www.python.org/dev/peps/pep-0008/

Python Module Index

c
contact_form.forms, 9
contact_form.views, 12

17

django-contact-form Documentation, Release 1.3

18 Python Module Index

Index

C
contact_form.forms (module), 9
contact_form.views (module), 12
ContactForm (class in contact_form.forms), 11
ContactFormView (class in contact_form.views), 13

F
form_class (contact_form.views.ContactFormView at-

tribute), 13
from_email (contact_form.forms.ContactForm attribute),

11

G
get_context() (contact_form.forms.ContactForm

method), 12
get_form_kwargs() (con-

tact_form.views.ContactFormView method),
13

get_message_dict() (contact_form.forms.ContactForm
method), 12

get_success_url() (con-
tact_form.views.ContactFormView method),
13

M
message() (contact_form.forms.ContactForm method), 11

R
recipient_list (contact_form.forms.ContactForm at-

tribute), 11
recipient_list (contact_form.views.ContactFormView at-

tribute), 13
request (contact_form.forms.ContactForm attribute), 12

S
save() (contact_form.forms.ContactForm method), 12
subject() (contact_form.forms.ContactForm method), 12
subject_template_name (con-

tact_form.forms.ContactForm attribute),
11

T
template_name (contact_form.forms.ContactForm

attribute), 11
template_name (contact_form.views.ContactFormView

attribute), 13

19

	Installation guide
	Quick start guide
	URL configuration
	Required templates
	The ContactForm class
	Built-in views
	Frequently asked questions
	Python Module Index

